Reconstitution of the Raf-1-MEK-ERK signal transduction pathway in vitro.

نویسندگان

  • S G Macdonald
  • C M Crews
  • L Wu
  • J Driller
  • R Clark
  • R L Erikson
  • F McCormick
چکیده

Raf-1 is a serine/threonine kinase which is essential in cell growth and differentiation. Tyrosine kinase oncogenes and receptors and p21ras can activate Raf-1, and recent studies have suggested that Raf-1 functions upstream of MEK (MAP/ERK kinase), which phosphorylates and activates ERK. To determine whether or not Raf-1 directly activates MEK, we developed an in vitro assay with purified recombinant proteins. Epitope-tagged versions of Raf-1 and MEK and kinase-inactive mutants of each protein were expressed in Sf9 cells, and ERK1 was purified as a glutathione S-transferase fusion protein from bacteria. Raf-1 purified from Sf9 cells which had been coinfected with v-src or v-ras was able to phosphorylate kinase-active and kinase-inactive MEK. A kinase-inactive version of Raf-1 purified from cells that had been coinfected with v-src or v-ras was not able to phosphorylate MEK. Raf-1 phosphorylation of MEK activated it, as judged by its ability to stimulate the phosphorylation of myelin basic protein by glutathione S-transferase-ERK1. We conclude that MEK is a direct substrate of Raf-1 and that the activation of MEK by Raf-1 is due to phosphorylation by Raf-1, which is sufficient for MEK activation. We also tested the ability of protein kinase C to activate Raf-1 and found that, although protein kinase C phosphorylation of Raf-1 was able to stimulate its autokinase activity, it did not stimulate its ability to phosphorylate MEK.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway.

The Ras-Raf-MEK-ERK pathway (or ERK pathway) is an important signal transduction system involved in the control of cell proliferation, survival and differentiation. However, the dynamic regulation of the pathway by positive- and negative-feedback mechanisms, in particular the functional role of Raf kinase inhibitor protein (RKIP) are still incompletely understood. RKIP is a physiological endoge...

متن کامل

The BRAFV600E inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells

Vertical growth phase (VGP) melanoma is frequently metastatic, a process mediated by changes in gene expression, which are directed by signal transduction pathways in the tumor cells. A prominent signaling pathway is the Ras-Raf-Mek-Erk MAPK pathway, which increases expression of genes that promote melanoma progression. Many melanomas harbor a mutation in this pathway, BRAF(V600E), which consti...

متن کامل

Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative...

متن کامل

Moxibustion Inhibits the ERK Signaling Pathway and Intestinal Fibrosis in Rats with Crohn's Disease

Intestinal fibrosis is the main pathological process in Crohn's disease (CD); acupuncture and moxibustion can inhibit the process of fibrosis in CD rats, but the regulatory mechanism remains unknown. The present study observed the effect of moxibustion on the extracellular signal-regulated kinase (ERK) signaling pathway in the CD rat. The result shows that the phosphorylation of the Ras, Raf-1,...

متن کامل

Multiple ras downstream pathways mediate functional repression of the homeobox gene product TTF-1.

Expression of oncogenic Ras in thyroid cells results in loss of expression of several thyroid-specific genes and inactivation of TTF-1, a homeodomain-containing transcription factor required for normal development of the thyroid gland. In an effort to understand how signal transduction pathways downstream of Ras may be involved in suppression of the differentiated phenotype, we have tested muta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 13 11  شماره 

صفحات  -

تاریخ انتشار 1993